

イオン注入機の歴史と当社の取り組み

History of Ion Implanter and Nissin progress and outlook

概 要

日新イオン機器株式会社は設立以来、半導体デバイス製造用の中電流イオン注入装置の製造販売を主たるビジネスとしている。EXCEEDシリーズは、その装置基本コンセプトの優秀性によって、また日々進化する顧客ニーズに対応した 新機種を提供しつづけることによって主要デバイスメーカに広く受け入れられて来ている。本稿ではEXCEEDシリーズ におけるシステム性能の向上及びそれを支える要素技術の進化を概説し、今後を展望する。

Synopsis

Nissin Ion Equipment Co.,Ltd. has mainly been engaged in the manufacturing and sales business of the medium current ion implanter for manufacturing semiconductor devices since its establishment. The EXCEED series have been widely acknowledged by the device manufacturers, for its quality in the basic machine concepts, and for its continued supplies of the leading-edge models that meet customers' requirements which evolve day by day. This paper includes the outline of system performance enhancement and key technology upgrading in the EXCEED series, and looks toward the coming decade.

1.はじめに

日新イオン機器株式会社は、日新電機株式会社イオン 機器事業部を母体として、1999年に100%出資子会社と して独立した。前回、日新電機技報に「イオン注入技術 の進歩と将来」としてイオン注入装置の報告を掲載した のは、1994年Vol.39.No.3である。その年に開発した EXCEED2000が、エネルギーコンタミフリーの新技術を 搭載した装置として業界に受け入れられ、その後プロセ

*日新イオン機器株式会社

スニーズの高度化に対応して継続開発したEXCEEDシリ ーズ機は業界をリードするイオン注入装置として認めら れた。折しも1999年以降のアジア地区におけるIT景気の 追い風を受け、日本国内のみならず、地の利を得て東ア ジア地区への進出に成功した。

本稿では、1994~1998年のイオン機器事業部から1999 ~2009年の日新イオン機器株式会社の時代までの装置開 発と製造・販売について総括すると共に、今後の展望を 述べる。

2.半導体製造プロセスと当社イオン注入装置

イオンビーム加速器技術を利用したイオン注入技術を 高集積トランジスタの製造に適用することにより製造歩 留まりが飛躍的に改善された経緯は前回の技報、第2章 に簡潔にまとめられている。本章では、1994年以降の最 新の半導体製造プロセスに使われているイオン注入技術 について紹介する。

半導体ICの基本構造であるMOSFET(Metal Oxide Silicon Field Effect Transistor)の模式図を図1に示す。ト ランジスタ内の各要素の寸法はゲート長(Lgate)を基準に 比例則で決められている。トランジスタの種類は用途に

図1 半導体構造と注入プロセスのスケーリング則

TIRS 2007 Prospect for 1/2 Pitch & Gate Lengt	ITRS 2007	Prospect f	or 1/2	Pitch &	Gate	Length
---	------------------	------------	--------	---------	------	--------

よって大略図2に示すように、DRAM、Flash Memory、 LSTP (Low Stand-by Power), LOP (Low Operational Power), MPU/ASIC(Micro-Processor/ Application Specific Integrated Circuit)に別けられるが、それぞれの LgateとLine-Pitch長さは、DRAMの1/2 Line-Pitch長さを 基準に比例関係にある。DRAMの1/2 Line-Pitch長さは、 nodeと呼ばれるトランジスタ世代を代表する基準長さ で、3年で0.7倍に縮小している。これが良く知られてい る「ムーアのスケーリング則」で、全てのICはスケーリ ング則に従って微細化、高集積化を進め、3年で素子密 度を2倍に増大するという驚異的な微細化スピードを保 ち続けてきた。微細化によって、ICの性能が向上し、且 つ単位(bit)当たりのコストが低減することにより市場を 獲得することができてきたのである。半導体ビジネスの 起動力である本スケーリング則が、今後も継続して保た れるかを危惧する声も聞かれるが、同様な危機は新しい 技術開発によって過去に幾度も乗り越えられてきてい る。当社はイオン注入装置の開発を通して、そのような 技術開発の一端を担ってきたし、今後も担っていきたい と考える。

トランジスタには、P型(P-N-P)MOSFETとN型(N-P-N)MOSFETの2種類があり、シリコンにボロンなどのP 型ドーパントを注入したP層とリン・砒素などのN型ド ーパントを注入したN層とが、ちょうど入れ替わって接 合を形成している。P型MOSFETとN型MOSFETを組み 合わせたCMOSFET(Complimentary MOSFET)が、IC論

Year of production	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
DRAM 1/2 pitch (nm)	100	90	80	70	65	57	50	45	40	36	32	28	25	22	20	18	16	14	13	11
Flash Poly Si 1/2 pitch (nm)					54	45	40	36	32	28	25	23	20	18	16	14	13	11	10	9
MPU/ASIC Metal 1(M1) 1/2 pitch (nm)					68	59	52	45	40	36	32	28	25	22	20	18	16	14	13	11
LSTP Physical gate length (nm)	76	65	53	45	45	37	32	28	25	23	20	18	16	14	13	11	10	9	8	7
LOP Physical gate length (nm)	65	53	45	37	32	28	25	23	20	18	16	14	13	11	10	9	8	7	6.3	5.6
MPU physical gate length (nm)	45	37	32	28	25	23	20	18	16	14	13	11	10	9	8	7	6.3	5.6	5.0	4.5

図2 半導体種類別微細化スケーリング

No.	ダブルウエル構造CMOSプ	ロセス	最近のCMOSFET(1999~)	
(ウ	リェル形成)			
1	局抵抗n型SIフェーハ ノールド酸化開取は、		10 -cm	
$\frac{1}{2}$	field SiO2 膜	 執酸化	LOCOS 用下敷き SiO2	
3	Si3N4膜	CVD		
4	レジスト塗膜			
5	フォトエッチング	マスク 1	pフィールド酸化膜下に注入できるようにする	
6	ドライエッチング (Si3N4)	1		
0	レンスト羽離		アテマノイルレンスト刺離	
9	レンス 主使 フォトエッチング	マスク2	nフィールド酸化膜下に注入できるようにする	
10	ドライエッチング (Si3N4)			
11	フィールド酸化	水蒸気酸化		
(ケ	*ート形成)	1		
12	Si3N4・下敷きSiO2腹除去			
13	12式01HC1設112		クート膜形成	
14	レンスト室峡 フォトエッチング	マスク 3	nチャンネルに注入できるようにする	
16	日イオン注入	300~1000keV,1E13	nチャンネルウエル形成とチャンネルストッパー	HE
17	B or Inイオン注入	40~100keV,1E12	nチャンネルパンチスルーストッパー	М
18	Bイオン注入	20~50keV,1E12	n チャンネル Vth 制御	Μ
19	レジスト剥離			
20	レジスト塗膜 フォトエッチング	77/24	。チャンクルに注入できるとうにする	
19	フォドエッテング	600~3000keV 1E13	Pチャンネルウエル形成とチャンネルストッパー	HF
22	P or Sbイオン注入	80 ~ 150keV.1E12	nチャンネルパンチスルーストッパー	M
23	Pイオン注入	40~100keV,1E12	n チャンネル Vth 制御	М
24	レジスト剥離			
(p	チャンネルソースドレイン形			
25	Poli-Si 成膜	SiH4 MCVD	ケート電極形成用	
20	レンスト空中	ママカ5	□チャンネルゲート電極形成田	
28	ドライエッチ(Poli-Si)	CE3ガス使用	Pゲート形成	
29	Bイオン注入	1~10keV,2E14	PチャンネルExtensionとPゲートドーピング	LE
30	SiO2 成膜	CVD		
31	Side Wall 形成	RIE		
32	Post Treat.	40 001-1/0545		
34	<u> B 01 BF21 オノ庄八</u> レジフト除手	10~00KeV,2E15	アテャンネルシーストレイン注入	п
(n ²	<u>レンス」 いろ</u> チャンネルソースドレイン形	(成)		
35	レジスト塗布			
36	フォトエッチング	マスク6	nチャンネルゲート電極形成用	
37	ドライエッチ (Poli-Si)	CF3ガス使用		
38		5~30keV,2E14	nナヤンネルExtensionとnケートドービング	LE
40	Side Wall 形成	RIF		
41	Post Treat.			
42	Asイオン注入	20~50keV,5E15	nチャンネルソースドレイン注入 + ゲート注入	Н
43	RTA	1000	S/D の活性化アニール	
44	HF での Side Wall 処理	HF		
45	C0 + IIN 放 膜 Salisida PTA #1 atap			
40 47	TiN 陰夫	硫酸塩洗浄		
48	Saliside RTA #2 step	WIERX-11/0/T		
(1	極形成)	·		
49	PSG-CVD成膜	リンを含んだSiO2 膜	層間絶縁膜形成: P10mol%を含むと軟化点が1,000度に低下	
50	リフロー	1000	表面半坦化(配線に必要)	
51	レン人 F 空巾 フォトエッチング	77 77	ソーフドレインコンタクト形成田	
52 53	<u>ノオドエッテノソ</u> ドライエッチ(PSG)	XAV/	シースドレイノコノダンド形成用	
54	Asコンタクト注入	30 ~ 50keV.5E15/cm ²	コンタクト抵抗低減	Н
55	Si 入り AIスパッター蒸着	Si, 1~3%	純AIだとSiを吸上げてアロイピット発生	
56	レジスト塗布			
57	フォトエッチング	マクス8	ソースドレイン配線用	
58	ドフイエッチ(Al)	BCI3 カス使用	ci cioo用面功業 AIとソーフ ビレインのコンタクレウウル	
59	□ <i>21 ーール</i> フォトエッチング工程	80	SI-SIOZ 576回 以音。AIC ソーストレイ ノのコノツソト女正化 HE・2stan M・4stan H・5stan (内IE・2stan)	
	ノ つ し エ ノノ ノ ノ 上1主	 Image: A second s	THE . ZOUCH INI . TOLEH II . JOICH (FILL . ZOUCH)	

表1 イオン注入プロセスステップ

HE:2step M:4step H:5step (内LE:2step)

理回路の基準単位である。1水準のVt(Threshold Voltage: しきい値電圧)を持ったCMOSFETの製造にど のようなイオン注入プロセスがどれだけあるかをまとめ た例を表1に示す。この例ではイオン注入プロセスは 11step**あるが、最新の**CMOSでは3水準、4水準といった 複数のVt値を持ったトランジスタを製造する関係で、

step数が大巾に増えて30step以上のイオン注入も行われ ている。半導体生産工場において、これらのイオン注入 プロセスを実際に処理するには、その注入プロセスに必 要な注入エネルギー、注入量に対応して、以下の4種類 のイオン注入装置が用いられる。 High Current(HC): 高電流機

 Medium Current(MC):
 中電流機

 High Energy(HE):
 高エネルギー機

 Low Energy(LE):
 低エネルギー機

 それぞれのイオン注入機のカバーするエネルギーと注入

 量の範囲を図3に示す。現在、イオン注入装置メーカは

 以下の6社が存在する。

米国: Varian Semiconductor Equipment Associates, Inc.、 Axcelis Technologies, Inc.、Advanced Ion Beam Technology, Inc.

図3 イオン注入プロセスとイオン注入機の分類

日本:日新イオン機器株式会社、株式会社SEN、株式 会社アルバック

当社は、経営資源を中電流機EXCEEDシリーズに集中 することで、中電流機市場におけるシェアを広げ、2008 年は40%を越えるシェアを得た。昨年生産機としてリリ ースしたCLARISシリーズは、今後必要性が拡大する低 エネルギー注入プロセス用の低エネルギー機に分類され る。

3.当社イオン注入装置とKey Technologyの進化

3.1 進化の概説

これまでのEXCEEDシリーズイオン注入装置の進化、 性能向上を図4にまとめる。1994年に世界に先がけて 開発したエネルギーフィルタ付き中電流イオン注入装 置EXCEED2000に続き、1998年にはエンドステーショ ンの信頼性を飛躍的に向上させたEXCEED2000Aを発売 した。2000年には300mmウェー八用EXCEED2300Hを、 2001年にはインジウム注入対応可能なEXCEED2300V を、2003年にはメカニカルスループットを大幅に向上 させたEXCEED2300AHを、2005年にはビーム量をアッ プし更にメカニカルスループットもアップさせた本格 的300mmウェー八用EXCEED3000AHを、そして2007年 にはエネルギーレンジを拡大したEX9600Aを発売した。

Year of Production			95	96	97	98	99	00	01	02	03	04	05	06	07	08	09
Tech. Node DRAM 1/2 Pitch (nm)			210	190	165	150	140	135	130	115	100	90	80	70	65	57	50
EXCEED 2000/2000A/2000AH				2000				EXCEED2000A/2000AH									
EXCEED	2300H/2300AH								2300H		A	н					
EXCEED	2300V/2300V <g1>/<g2></g2></g1>							2300V 2300AV 2					2	300AV <g2></g2>			
EXCEED	3000AH <g1>/<g2>/Evolution</g2></g1>												G1	3	3000AV <g2></g2>		
EXCEED	9600A/Evolution														EXC	EED9	600A
	Wafer Size			2	00mm ⁽	ρ			300mm φ								
>	Mechanical Throughput			200wf/H 220wf/H 300wf/H 360							450wf/H						
vity	Beam Current: B+		1	250 u <i>i</i>	A @ 1	0keV			250 u	A @	10ke\	/	12	1200 uA @ 10keV			
cti	Beam Current: As+		400 u A @ 20						500 u	A @ :	20ke\	/	500 uA @ 20keV				
npo	Beam Current: B++		4	0 puA	A@5	00ke\	/		30 puA						250 puA		
Beam Current: P+++			15 puA @ 600keV						15 puA						85 puA		
			10keV						5keV						3keV		
Ш	Max. Energy				400keV					750keV					960keV		
Un Source Type U Set Up Time			Bemas						Advanced Bemas (BEAR)						IHC type		
			6 min						4.5min 3.5min						3.0min		
	Maintenance Time (I/S Life Time)				200H				400H					700H			
	Indium							Ind	ium-								
ess	Energy Contamination		Fir	nal Er	nergy	Magi	net-										
Particle Contamination Metal Contamination								Cor	nducti	ve-Pe	ek W	afer I	Holde	r٠			
											Met	al Fr	ee Co	ver-			
Pre	Uniformity			1D-2L		2D-	2L	2D-	3L Fa	rada	y Sys	tem-					
Ω	Parallelism/ Beam Divergence														X-Y	' mon	itor
三	Tilt/Twist Angle Accuracy																
XC	Charge Compensation					Fila	ment	PFG RF-PFG									
ш	Patterning Implantation (PI System)															PI Sy	stem

Improvement of EXCEED Series Ion Implanter Characteristics

図4 EXCEED シリーズイオン注入装置の性能進化

210nm世代にリリースされたEXCEED2000から、 150nm、130nm、90nm、65nm世代のEXCEED9600A まで5世代に亘って、約2年毎に諸機能を進化させた新 しNversionを開発、市場に投入して来ていることにな る。現在、来年の45nm世代に向けてEXCEED Evolutionのリリースを準備中である。ウェーハサイズ は200mmから300mmを経て、次の32nm世代には 450mmウェーハに変わるといわれている。その時のIC の高密度化は64倍、ウェーハサイズによる生産性向上 は4倍となる。高密度化やウェーハサイズの拡大によ る生産性向上は、装置の更なる性能向上無しには達成 できない。図4に示したように、生産性向上にはメカ ニカルスループットとビーム電流の増大、イオン源の 立上げ時間短縮や寿命延長が必要である。高密度化に は、イオン注入の高精細化のため注入均一性とビーム 入射角度の精度・再現性確保、各種コンタミネーショ ンの除去と新規イオン種の発生・注入、チャージアッ プ対策とPI注入(Patterning Implantation)のようなトラ ンジスタサイズ変動の補正機能等、さまざまな要素技 術開発と総合システム化が必須である。以下に、それ らがどのように達成されてきたかを概説する。

3.2 EXCEED2000A

図5はシングルプラテン型エンドステーションを搭 載したEXCEED2000Aの概要図である。イオン源=分析 マグネット=加速管=エネルギーフィルタマグネット (以下FEMと呼称)=ビームスイープマグネット(同 BSM)=平行化マグネット(同COL)=シングルプラテ ン型エンドステーションから構成されており、以後の EXCEEDシリーズは全てこの構成からなる。EXCEED シリーズの最初のVersionであるEXCEED2000は2枚の ウェーハを連続して注入できるデュアルプラテンを搭 載し、機械的走査をしても注入位置が空間的に変化し ないという斬新なものではあったがその動作信頼性に 難があった。EXCEED2000Aでは注入動作信頼性とメ

Complete Elimination of Energy Contaminant

図6 エネルギーフィルターマグネット (FEM)

ンテナンス性を大きく向上させたシングルプラテン方 式とし、機械的スループットもEXCEED2000と同等以 上を達成した。

FEMは本シリーズを特長づける機能要素のひとつ で、これによって加減速後にピームに含まれるエネル ギーコンタミ成分を完全に除去することができ、トラ ンジスタのVtのばらつきを抑制できる製造プロセス実 現のために不可欠なコンポーネントである。図6に、 FEM近傍のピームライン構成図を示す。加速管で加減 速後のピームに含まれるエネルギーコンタミ成分のピ ームをBSMの入り口に設けたスリットで完全に除去す る。エネルギーコンタミ成分の発生は、加速管近傍で イオンピームを輸送中に中性粒子と衝突することによ る解離・電離反応に起因する。

エネルギーコンタミを含むビームが注入されると、 注入深さや注入量が所要の値からはずれる。エネルギ ーコンタミの発生原因となる上記反応は、特に注入イ オンに分子イオンや多価イオンを用いる場合に問題と なる。また、ウェーハにレジストを塗布していないべ アウェーハでは注入中の真空度がほとんど無いので発 生し難いが、レジストを塗布した実ウェーハでは真空 度の顕著な悪化のため発生しやすく、また真空排気系 の状態によって変動するという不安定要素となる。本 機能の搭載によるエネルギーコンタミ完全な除去の達 成は、量産プロセスへの分子イオンや多価イオンの積 極的利用を実現した。現在では、中電流イオン注入機 には何らかのエネルギーフィルタを設けるのは標準と 成ったが、マグネットによる運動量分離方式が装置構 成上もっともエネルギーコンタミ除去能力を大きくで きる。

EXCEEDシリーズでは、直流+交流電流波形により BSMを励磁して、パイアス磁場によってイオンビーム を水平に高速走査後、COLにより平行な走査ビームを 形成する。磁場による高速走査は、当社が独占使用し ている技術であるが、電界走査で生じるビームの空間 電荷効果によるビームのプローアップが抑えられるた

めビーム輸送中のロスを少なくできる。バイアス磁場 を使う理由は、ビームがBSM中で磁界がゼロの領域を 通過することを無くし、空間電荷の特異変動を無くす ためである。

図7は、ウェーハの面内注入量分布を制御する注入 制御システム構成で、高精度・高信頼の注入を実現す るEXCEEDシリーズの根幹技術である。ウェーハの前 側に取り付けられたフロントファラデーと後ろ側に取 り付けられたバックファラデーによりそれぞれの位置 でのビーム走査によるビーム電流量積算分布を測定 し、ウェーハ位置での水平方向注入量分布を算定する。 その注入量の分散が基準範囲内に入るようにBSMの励 磁電流波形を整形制御する。本方式は、上記注入量分 布の監視制御に加え、ビームの平行度 / ビームの方向 角分布測定も同時に行うことが可能である。ウェーハ 前方後方の2箇所でマルチファラデーを採用すること により、世界に先駆けてビーム平行度 / 方向角分布を in-situ**測定する機能を**built-inしたのはEXCEEDシリー ズの前の主力製品NH20-SPであるが、EXCEEDシリー ズではそれをより高精度・高信頼化した。これに関す る更なる機能向上については後述する。

3.3 ECEED2300H/AH/V, EXCEED3000AH

1996年にEXCEED2000Aとほぼ同時に開発を始めた 300mmウェーハ対応装置EXCEED2300Hは、1998年から 日本の半導体メーカ10社によるコンソーシアムSELETE (半導体先端テクノロジーズ)による評価で300mm生産 装置としてqualifyされ、市場投入した。これは、 EXCEED2000Aの大地電位部ビームラインとエンドステ ーションを300mm対応としてスケールアップした装置 であるが、ビーム調整制御、注入制御、ウェーハ搬送 制御などの制御ソフト/ハードは基本的に共通構造とす ることで、開発の効率化を図った。

300mm対応装置の市場競争力は装置技術的にはその メカニカルスループットが大きなウェートを占める。 EXCCE2300AHは、真空内のウェーハ受渡しを1位置か ら2位置に増やし、大気側に搬送のバッファステーショ

図7 注入制御システム構成図

ンを設けることで、メカニカルスループットを EXCEED2300Hに比して約40%向上させたものである。

トランジスタ構造の微細化のためにインジウムやア ンチモン等の重いイオンをポロンに代わって用いるこ とにより、注入深さ/接合深さを浅くするという手法 が2000年はじめ頃より有望視されるようになったこと に対応して、これら重イオンをこれまでとほぼ同じ軌 道で分析・収束・走査するため磁場強度を上げたビー ムラインを開発し、同時にこれらイオンを短時間で発 生するための高温オーブンを開発して、EXCEED 2300Vとして市場投入した。

図8は、2005年にリリースした本格的300mmウェー ハ対応のEXCEED3000AHの概要図である。この装置は、 EXCEED2300Vのビームラインをベースにイオンビーム の通過できる面積をビーム光学的に広げてビーム量を 増大し、また、そのエンドステーションについて、従 来採用していた2アーム一体駆動方式による真空内ウェ ーハ搬送ロボットを2アーム独立駆動方式とし、さらに 大気側のロボットを2アーム独立駆動方式とし、さらに 大気側のロボットをシングルアームからダブルアーム3 関節式にして従来行っていたウェーハ回転による芯出 し工程を廃止し、さらに機械的走査速度も60%アップ することなどをトータルシステムとして完成させた。 ボロン10 keVにおけるビーム電流値は2.5倍、メカニカ ルスループットは約50%の増加である。図9に、

図8 EXCEED3000AH概要図

メカニカルスループットの向上

イオン注入機の歴史と当社の取り組み

図10 ビーム角度制御システム構成図

EXCEED2300AHに採用した従来型エンドステーション とEXCEED3000AH・<G2>のスループット改良型エンド ステーションの違いを図示する。

昨今のイオン注入プロセスではビームの注入角度均 一性と再現性が強く求められている。中電流プロセス ではHalo注入の角度精度がVtバラツキ量の決定要因と なっているため最も高精度の注入角度制御が要求され ている。図10は、EXCEED3000AHで採用している機能 向上したビームの平行度/方向角測定方法(XYモニ タと呼称)である。左側に図示した従来の水平方向の ビームの平行度/方向角分布/広がり角分布の測定に 加えて、ファラデーおよびスリットの垂直方向サーボ

駆動を行えるようにしたことによって、垂直方向のビ ーム方向角分布/広がり角分布が測定できるようにした ものである。これら諸量は、イオン源のビーム引出電 極系やビームラインの可変光学要素によって所定の値 に調整される。この機能の搭載は、換言すれば、走査 ビームの形状が水平方向の各位置で測定できるように なったということであり注入角度のみならず、精密な 注入量分布やチャージングフリーの注入が維持されて いるかなどのプロセス監視ツールとしても極めて有用 であることを意味する。他方、ウェーハへの注入角度 精度を保証する点でプラテン上のウェーハのチルト 角・ツイスト角の精度・再現性も重要な要素である。 図11にチルト角度・ツイスト角度制御監視システムの 概要を示す。これにより、プラテン上部に取り付けら れたCCDカメラでウェーハ位置を検知し、±0.1度以内 のフィードバック制御が可能である。

微細化の進展によって、図1に示したゲート長が短 くなると、その量産加工(エッチング)において、ウ ェーハの中央と端部でエッチング量が僅か変化して も、Vtはウェーハの中央と端とで大きく変化するよう になる。この現象を補償するために、意図的にウェー ハ面内の注入量分布を中央から端に適当な傾斜をつけ て注入するという手法がある。即ち、注入量のウェ ーハ面内分布が通常の均一注入ではなく、きちんと制 御された不均一注入(同心円分布)である。EXCEED

3000AHの注入制御方式は、走査速度のプログラム制 御とウェーハのステップ回転を利用して、このニーズ に対応している。

3.4 EXCEED9600A

図12は最大注入エネルギーを従来の250keVから 320keVに上げて、B2価イオンで640keV、P3価イオン で960keVまで注入できるEXCEED9600Aの概要図であ る。図3に中電流機のエネルギー範囲の増大を示した が、デバイスの微細化に伴って従来の高エネルギープ ロセスの大半がSub-MeV領域に下がってきており、 MeVエネルギープロセスのみ高価な高エネルギー機で 処理して、Sub-MeVエネルギープロセスは中電流機で 処理すると、注入プロセス全体として生産効率が向上 する。本装置はそのような注入ができることを目的に ビームラインの加速管と加速電源を改良して印加電圧 をEXCEED3000AHの210kVから280kVにアップした。 装置が設置されるクリーンルーム環境への配慮から EXCCED3000AHでoption適用していたモールド型の移 動トランスを本装置では標準搭載とし、シールドキャ ビネットと高電圧部との適正な空間絶縁距離を保つこ とで、装置サイズの拡大を最小にした。

本装置では多価イオンビームを高電流量、長時間発 生する必要があることから、従来使われていたパーナ ス型イオン源およびその改良型のBEARイオン源を基

図12 EXCEED9600AH概要図

に更に改良を加えたIHC-Rイオン源を開発した。図13 にBEARイオン源とIHC-Rイオン源の概略図を示す。 BEAR(Bernas-type Electron Active Reflection)イオン源 は、その名が示すとおり、パーナスイオン源のプラズ マ生成部のリフレクタに可変の電圧を印加することに よって電子を積極的に反射しイオン引出しスリット近 傍のプラズマ密度を増大させることによってイオンビ ーム生成効率の向上し、フィラメント負荷を低減する ことによるフィラメント寿命延長を実現している。そ れに対しIHC-R (Indirectly Heated Cathode with

BEAR (Bernas-type Electron Active Reflection) イオン源

<Source life time>

	BEAR	IHC-R2			
Heavy user for P+++	~ 100 hr	400 ~ 500 hr			
Normal user for	000 500 h-	500 br. ~			
Medium Recipe	200 ~ 500 nr	500 nr ~			

IHC-R2 (Indirectly Heated Cathode with electron active Reflection) イオン源

<beam current=""></beam>						(e µ A)		
Enormy	ボロン	イオン	燐イ	オン	砒素イオン			
Energy	BEAR	IHC-R2	BEAR	IHC-R2	BEAR	IHC-R2		
300 keV (++)	80	350	600	1500	600	1500		
600 keV (+++)	-	-	45	260	-	600		

図13 イオン源概要図

Plate

n

Back Farada

	Filament Type PFG	RF Type PFG
Electron Energy	6 eV	3 eV
Electron Current Density	10 μ A / cm ²	$20 \ \mu \text{ A} \ / \text{ cm}^2$
Life Time of PFG	> 500 hr	> 1000 hr

図14 チャージ緩和システム構成図:フィラメント型・高周波型

electron active <u>Reflection</u>)イオン源は、フィラメント がプラズマに直接曝されないようにプラズマとの間に カソード(熱陰極)を追加し、カソードはフィラメント からの熱電子で加熱されてプラズマ生成用の熱電子を 発生する。リフレクタ電圧可変構造はBEARイオン源 と同様にしてある。また、カソード部絶縁部の材質を 変更して耐熱温度を上げ,熱と汚れに対する絶縁耐性 を上げた。これらによって1価イオンのみならず多価 イオン生成においても高いイオン生成効率を有し、高 多価イオンビーム量での運転についても長寿命化が達 成された。図13にそれぞれのイオン源の陰極寿命と 最大ビーム電流を示す。

3.5 微細化対応のためのその他主要技術

上記に述べてきたような微細化の進展とビーム電流 の増大は、他方、チャージアップによる素子破壊の問 題を発生させる恐れがある。図14にその対策として 開発したチャージアップ緩和システムを示す。 EXCEED2000AHまでの200mmウェーハ用にはフィラ メント型PFG (Plasma Flood Gun)を搭載していたが、 EXCEED2300H以降の300mmウェーハ用には、微細化 デバイス向けに新たに開発した高周波型PFGを搭載し た。いずれもウェーハ直前でイオンビームにプラズマ を供給してウェーハ上のプラス電荷をプラズマ電子で 緩和するシステムである。プラズマ電子はデバイスを 負にもチャージアップさせるので、ゲート酸化膜が 1nm以下に薄くなったデバイスでは電子エネルギーを 酸化膜の耐電圧に対応する3eV以下にする必要があ る。当社の高周波PFGは電子エネルギーを磁気フィル ターで3eVまでに低減する機能を備えている。熱陰極 フィラメントを使っていないため陰極の損耗が無く、 運転寿命を長く取れることや、タングステンコンタミ の発生の恐れが原理的に無いので、高周波型PFGは、 最新の微細化デバイス製造には不可欠のシステムにな っている。

微細化の進展とともに、ウェーハへのメタルコンタ ミ付着やパーティクル付着を十分低いレベルに維持管 理することは、実際の生産ラインでは極めて重要であ る。EXCEED3000AH, EXCEED9600Aでは、これらの 発生の源への処置として、ビームを見通せる位置にあ る部材表面を高純度でダスト発生の少ない特質のカー ポンで覆うことや、ウェーハ方向への輸送を遮るため の同様な材質の遮蔽板の設置をビームライン上流の SAMまで遡って、隈なく実行してきている。

4.イオン注入技術の将来と当社の対応

図15は、International SEMATECHが公開した半導体 のロードマップ:ITRS2007(International Roadmap for Semiconductor 2007年度版)から引用した次世代トラン ジスタ構造のロードマップである。従来のポリシリコン ゲートとSiO2ゲート酸化膜のトランジスタは、メタルゲ

図15 ITRS**ロードマップ**

ートとHigh-kゲート絶縁膜のトランジスタに置き換えら れ、FD-SOI (Fully Depleted-Silicon On Insulator)や Multi-Gateといった次世代トランジスタには、2008年か ら2013年の5年間で移行すると予想されている。しかし ながら、CCD・CMOSセンサーやDRAM・Flash Memoryといった信頼性の要求されるデバイスについて は、このような次世代トランジスタ構造で問題なく量産 できるか否かについては確定していない。いずれにして も、これら信頼性の要求されるトランジスタで微細化の 進んだデバイス製造には、より高精度の注入が必要にな る。当社は現EXCEEDシリーズを更に高機能化した EXCEED3000 EvolutionとEXCEED9600 Evolutionで対応 する。いずれも、ビーム角度とウェーハ位置の制御性・ 再現性を向上させ、ビーム量をアップし、メカニカルス ループットを増加する。

他方、次世代トランジスタの注入にはCLARISシリー ズで対応する。2008年に、低エネルギー機として始めて リリースしたCLARIS<G1>は、ボロン注入専用機である が、ボロン+カーボン機CLARIS<G2>を2009年リリース し、更には2010年にリン・砒素も注入できる本格的クラ スタ注入機CLARIS<G3>をリリースする計画である。本 機は低エネルギー機といっても高電流プロセスのエネル ギー範囲をほぼカバーすることから、EXCEEDと CLARISで、MeV注入以外のイオン注入プロセスをすべ てカバーできると考えられる。

図15には、ウェーハサイズの増大の予測も記載してあ るが半導体業界最大手のIntel Corporation、Samsung Electronics Co.,Ltd.、Taiwan Semiconductor Manufacturing Company,Ltd.のGroupでは、2012年をターゲットとして 450mmウェーハでの生産が検討されている。この市場ニ ーズに対応して、遅滞無く450mm対応機を開発する所存 である。

最後にシリコン基板IC以外のイオン注入技術の適用市

場について概説する。SiC基板ICは高温耐性があること から車載用パワーデバイストランジスタが有望と言われ てきたが、最近高品質のSiC基板を作成する技術が開発 されつつあり、イオン注入を利用できれば歩留まりを向 上できる可能性がある。そこで、主な注入イオンである Al⁺イオンを高スループットで生産できる装置ニーズが 高まっており、当社は、これに対応する装置をリリース する計画である。MEMSや、Solar cell分野への適用は、 製造コストの障壁が高いが、simpleな注入装置を提供で きれば、大規模な市場が拓かれる可能性を有している。 ディスプレーに用いられるLTPS-TFT (Low Temperature Poly Silicon Thin Film Transistor) 製造用イオン注入装 置については、20年前にこの装置市場を開拓した当社は、 現在市場占有率1位を確保しており、現在の4.5世代ガラ ス基板対応装置技術をもとに、次世代の5.5世代基板対 応装置開発を進めている。

参考文献

- (1) International SEMATECH; ITRS2007 (2008).
- (2) T. Nogami et al., AIP Conference 1066, Proceedings of IIT2008,p.187
- (3) T. Nagayama et al., AIP Conference 1066, Proceedings of IIT2008,p.215
- (4) S.Umisedo et al., AIP Conference 1066, Proceedings of IIT2008,p.296
- (5) Gartner "Market Share: Semiconductor Implant and Thermal Equipment, Worldwide, 2008" 5 May 2009
- (6) Gartner "Forecast: Semiconductor Wafer Fab Equipment, Worldwide, 2Q09 Update" 10 June 2009 "Forecast: Semiconductor Wafer Fab Equipment, Worldwide, 3Q05 Update" 7 July 2005

イオン注入機の歴史と当社の取り組み

➡執筆者紹介

丹上正安 Masayasu Tanjyo 日新イオン機器(株) I/I事業センター エキスパート

森本 勇 Isamu Morimoto 日新イオン機器(株) 管理・企画部 経営企画グループ 主任

宮本直樹 Naoki Miyamoto 日新イオン機器(株) I/I事業センター 開発グループ

野上貴史 Takashi Nogami 日新イオン機器(株) I/I事業センター 開発グループ 主任

濱本成顕 Nariaki Hamamoto
 日新イオン機器(株)
 I/I事業センター
 クラスター技術開発グループ長

岩澤康司 Koji Iwasawa 日新イオン機器(株) I/I事業センター S/W技術グループ長

佐々木淳次 Junji Sasaki 日新イオン機器(株) I/I事業センター セールスエンジニアリンググループ長

山下貴敏 Takatoshi Yamashita 日新イオン機器(株) I/I事業センター 開発グループ長

永山 勉 Tsutomu Nagayama 日新イオン機器(株) I/I事業センター カスタマーサポートグループ エキスパート

酒井滋樹 Shigeki Sakai 日新イオン機器(株) I/I事業センター エキスパート

松本貴雄 Takao Matsumoto 日新イオン機器(株) I/I事業センター カスタマーサポートグループ エキスパート

内藤勝男 Masao Naito 日新イオン機器(株) 取締役